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and because the deviations in Fobs and Fe~e one wants to 
find may be partly obscured by incorrect 'refinement'. 

The probable errors as fimctions of I and O. 
We confine ourselves here to the first and the last of the 

above mentioned methods, and we designate the probable 
errors as estimated for the individual reflexions by 6 and 
the values obtained by averaging 6"s by tr. 

It has been generally assumed that cr can be considered 
as only a function of the magnitude of Fobs, though some 
authors have been aware of the influence of the Lorentz- 
polarization factor (e.g. Feil, 1961; Cruickshank et al., 
1960). Since maximum accuracy can be obtained with the 
least-squares method only when the weights assigned to 
the observations are correct (Cruickshank, Pilling, Bujosa, 
Lovell & Truter, 1960), it was considered worth while to 
study this problem in some more detail. 

From the formula Fobs= l/Iob~/Lp it follows that 

error in ~/o/)~b~ 
error in Fobs = 

and from this formula it is seen that the error in Fous may 
be expected to be a function of lobs and of 0 (De Vries, 
1963). It will be a function of lobs because the accuracy of 
the measurement is generally a function of the measured 
intensity. It will be a function of 0 since 

(a) the error in Fob~ is a function of the magnitude of the 
Lorentz-polarization factor; 

(b) the error in lob~ will be a function of 0, e.g. through the 
~ 1 -  0[2 separation which increases with 0. 

Deviations in F ~ e  due to approximations in the model 
will also be a function of 0. 

The correct way, therefore, to deal with the variation 
of cr is not to regard it as a function of F or as a function 
of F and 0, but as a function of I and 0. 

The determination of ~o(0) and ~u(I). 
Since in most cases there will not be enough data to 

determine a directly as a function of two variables, we shall 
make the plausible assumption that the/-dependence of a 
is not influenced by 0 or vice versa, in the formula: 

G= ~0(0) x ~,(I). 

This way it will be possible, after making an initial assump- 
tion about, say, ~0(0) (e.g. ~0(0)= 1/I/Lp; compare below), 
to use all ~ values in each I range to determine ~,(I); this 
~u(I) is then used to obtain a better ~0(0), and so on. Thus 
the number of data over which averaging is performed each 
time will be large enough, and reliable estimates of ~0(0) and 
~u(I) can be obtained. 

The interpretation of ~o(O) and ~,(1). 
Both ~0(0) and ~,(I) have physical significance, so these 

functions may be of use not only for the calculation of 
weights but also as a check on the measurements and on 
the refinement. 

From its definition it follows that ~u(1) gives the variation 
of a with lobs when 0 is constant, and since it does not seem 
likely that the error in Feale could be a function o f / ,  this 
variation of ~r can always be attributed completely to the 
variation of the error in Fobs. So, a plot of ~,(1) will give the 

variation of the error in t//~b~ with lobs (for constant 0). 
For instance, for counter data the statistical counting error 
gives a constant contribution to ~,(1), but, owing to the 
influence of errors in the measurement of the background 
scattering on the one hand and extinction, absorption and 
scaling errors on the other, one may expect an increase of 
~,(I) both for low and high values of I. 

The interpretation of q~(0) depends upon the method used 
to determine the 6's, since also the errors in Foaae vary with 
0. Restricting ourselves for the moment to the influence of 
errors in Fobs, we get (for lobs= constant): 

error in Fo~s = c x ~0(0) 
error in lob~ = 2e x Lp x Fobs x ~0(0) 

= 2e x 1 " ~  x l'/~bs x ~(0) 

= c "  x t ' L p  x ~(0) .  

Thus we find the following interpretation for ~0(0): a plot 
of I/Lp x ~0(0) gives the variation of the error in the intensity 
measurement with the Bragg angle (for constant lobs). A 
variation of this kind may be caused for instance by the 
~ t -~2  separation, the varying breadth of the diffracted 
beam, slight misalignment of the crystal or absorption 
effects. 

The 0-dependence of various errors in Feal~ will be dis- 
cussed in another article. 

I thank Prof. J. M. Bijvoet and Prof. A. F. Peerdeman for 
their valuable criticism. I am indebted to Dr J. Kroon and 
Dr J. C. Schoone for many stimulating discussions. 
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The Mo K a l / C U  Kal wavelength ratio. By ANN S. COOPER, Bell Telephone Laboratories, hworporated, Murray Hill, 
New Jersey, U.S.A. 

(Received 20 August 1964 and in revised form 22 October 1964 

The commonly used values of the wavelength of X-radi- 
ation were determined by Siegbahn (1931) and are based 
on the cleavage spacing of calcite. Cohen & DuMond  
(1963), in redetermining the value of Avogadro's number, 

have analyzed 16 X-ray lattice constant determinations. 
They found that the value o f  t ~determined from measure- 
ments made with copper radiation is 76+ 25 pprn larger 
than the value determined with molybdenum radiation, 
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when the Siegbahn wavelength values are used. This sug- 
gests that the ratio of the wavelengths, Mo K~/Cu  Koq, 
needs to be revised. 

This ratio has been redetermined by the precise lattice 
constant method of W. L. Bond. The instrument used is 
the one described by Bond (1960) except that for the de- 
tection of molybdenum radiation the two Geiger tubes were 
replaced by scintillation counters and the dimensions of the 
collimator slits were increased to 0.010 inch wide x 2 mm 
high to give more intensity. 

The specimen used was cut from a single crystal of 
super-pure germanium prepared by the Czochralski tech- 
nique by E. Kolb of Bell Telephone Laboratories, and hav- 
ing a resistivity of 46.0-51.0 ~2 cm. Cu Koq radiation was 
used to measure the 444 reflection (0=70.6 °) and Mo K~I 
was used to measure the 999 reflection (0= 77.7°). Correc- 
tions were made for polarization, refraction, and axial 
divergence of the beam. The temperature was held to 
+ 0.1 °C and corrected to 25 °C using the expansion co- 
efficient 6.1 x 10 -6 deg -x. Each 0 value used in the calcul- 
ations is the average of four determinations of the peak of 
the X-ray profile. The standard deviation was computed 
from the variation in measured 0. 

Assuming 2Cu K~q = 1.537395 kX, the lattice constant 
of germanium computed from the measured 444 reflection 
angle is a=5.646141 +0.000037 kX. This value was used 
with the measured 999 reflection angle to compute 2Mo K~ 
= 0.707840 + 0.000005 kX. Details of this computation ap- 
pear in Table 1. Thus the ratio is 

2(Mo)/2(Cu) = 0.707840/1.537395 = 0.460415 + 0.000005 . 

This result is in good agreement with the ratio recently 
redetermined by Bearden, Henins, Marzolf, Sauder & 
Thomsen (1964). In a lengthy program of measurements 
using a two-crystal spectrometer, they have obtained the 
ratio 

2(Mo)/;t(Cu) = 0.707831/1.537370 = 0.460417 + 0.000002 . 

However, the change in wavelength ratio is in the wrong 
direction to harmonize the two sets of lattice constant data 
studied by Cohen & DuMond.  Since an increase in the 
wavelength value of 1 ppm decreases the value of . / ] / ' b y  
3 ppm, based on my wavelength ratio, the two values of 
Avogadro's number would now differ by 126 ppm. 

This method of lattice constant determination eliminates 
many of the errors present in powder methods, and correc- 
tions can be accurately computed for those remaining (Bond, 

1960). The refraction correction applied here differs slightly 
from the classical one used by Bond, in which 6 is unity 
minus the index of refraction of the crystal for the wave- 
length used, and 

6 = ne222/27rmc 2 . 

n, the number of electrons per cm3, must be modified 
by a dispersion correction to allow for interaction of these 
electrons. This dispersion correction was taken from data 
of Dauben & Templeton published in International Tables 
for X-ray Crystallography (1962). 6 calculated with this cor- 
rection is 14.4 × 10-6 for germanium with copper radiation. 
The classical equation gives 15.0 x 10-6. For molybdenum 
radiation the value of 6 used above is 3.2 x 10-6. 

Bearden (1932) has used a prism method for measuring 
6 in quartz. His prism was prepared by wringing two optic- 
ally flat plates together and polishing one mutual edge until 
the line of demarcation disappeared. This produced a sharp 
corner when the plates were separated. Our germanium 
prism was prepared in a similar way. It is more difficult 
to produce a flat surface and a sharp edge on germanium 
than on quartz because germanium is much softer and 
cleaves easily. The refracted and reflected lines on the X-ray 
film are, therefore, broader, decreasing the precision. An- 
alysis of four films yielded a value of 6=(13.1 _+ 1.2) x 10-6 
for copper radiation. 

Another method sometimes considered for determining 
the refraction correction is that of measuring several orders 
of reflection and finding 6 from the slope of a plot of a vs. 
cosec 2 0. Data from the 333, 777 and 999 reflections from 
germanium gave 6=3 .95x  10-6 for Mo radiation, and 
measurement of the 111, 333 and 444 reflections gave 
6=7 .52x  l0 -6 for Cu radiation. Analysis of the Bragg 
equation corrected for refraction (James, 1948): 

m2 = 2d(1 -6 / s in  z Ore) sin Om 

reveals that an error as small as a few seconds in measuring 
0 produces an uncertainty in 6 of the same order of mag- 
nitude as 6 itself. Therefore, it is impossible with out present 
facilities to determine 6 by this method. 

A second possible error will occur if there is a difference 
in the peak position of an X-ray line depending on whether 
it is excited by a small or a large excess voltage above the 
critical value. Van den Berg (1957) has reported such a 
shift in the Cu L~ and Ni Lo, lines. Comparison was made 
of values of the lattice constant of germanium computed 
from the 999 reflection of Mo radiation with voltages of 25, 

Table 1. Summary of  data used to compute wavelengths 

Cu Koq Mo Kal Co Kal 
hkl 444 999 333 
01 70 ° 36' 27" 77 ° 43' 54" 55 ° 14" 16" 
02 70 ° 36' 29" 77 ° 43' 47" 55 ° 14' 12" 
03 70 ° 36'21" 77°43"47 '' 55 ° 14' 18" 
04 70036'29 '' 77°43'51" 55 ° 14' 18" 
0mean 70036'26"5"+3"8 '' 77043'49"8"+3"4 '' 55°14'16"0"+ 1"8" 
Lp correction 0.2" 0"9" 0"05" 
*a (Kx) 5.646014 5.646141 5.646141 
6 14.4x 10 -6 3.2x 10 -6 20.4x 10 -6 
Refraction correction 0.000091 0.000019 0.000171 
Axial divergence 0.000023 0.000092 0.000023 
Temperature 24"63 ° 24"75 ° 24-95 ° 
Temperature correction 0.000013 0.000009 0.000002 
a (corr.) 5" 646141 5" 646021 5" 645945 
2 (kX) 0.707840 1 "78528 
Standard deviation + 0.000037 + 0.000005 + 0-00002 

Fe Kal 
333 

62 ° 45' 18" 
62 ° 45' 19" 
62 ° 45' 20" 
62 ° 45" 17" 
62°45 ' 18"5" + 1"3" 

0-1" 
5"646141 

23"8 × 10-6 
0"000170 

0"000023 
24.9 ° 

0"000003 
5"645945 
1-93204 

+ 0-00001 

*a is the calculated value in the case of Cu Keel, assumed in the three other cases. 

AC18--7 
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35, and 50 kV. The variation observed was less than the 
standard deviation of the measurements. For the 444 re- 
flection with Cu radiation at 20, 35 and 50 kV, there was 
no difference in the values of a, the difference in measured 
0444 being only 1-0 sec. 

In the same way, and using the same germanium crystal, 
determination was made of the ratio of the Co K~x wave- 
length and of the Fe K~I wavelength to Cu K~I. 2 Co Ko,1 
was computed from the 333 reflection for which 0= 55.2 °. 
2 Fe Ka, t was measured from the 333 reflection at 0=  62.7 °. 
A summary of the calculation and corrections is given in 
Table 1. The calculated wavelengths and wavelength ratios 
are shown in Table 2 where they are compared with the 
values of Siegbahn. 

Table 2. Calculated wavelengths and ratios 
Cooper Siegbahn 

Cu K~I 1.537395 kX (assumed) 1-537395 kX 
Mo K~I 0.707840 _ 0.000005 0.707831 
Co Koq 1.78528 + 0.00002 1.78529 
Fe K~I 1.93204 + 0.00001 1-932076 
2(Mo)/2(Cu) 0.460415 0.460409 
2(Co)/2(Cu) 1.16124 1.16124 
2(Fe)/2(Cu) 1.25670 1.25672 

The Co/Cu ratio is identical with Siegbahn's, while the 
Fe/Cu ratio differs by 16 ppm, and the Mo/Cu ratio differs 
by 13 ppm. 

I am indebted to W. L. Bond and to J. W. M. DuMond 
for helpful advice and discussion. 
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New intermediate phases in  t r a n s i t i o n  m e t a l  sy s t ems .  I I .  By B. C. GIESSEN and N. J. GRANT, Department of Metall- 
urgy, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A. 

(Received 16 October 1964) 

This report is a continuation of a former abstracted com- 
munication (Giessen & Grant,  1964) on intermediate phases 
encountered in the course of an examination of binary 
transition metal systems containing a refractory metal com- 
ponent. Detailed descriptions of this work have been pub- 
Iished, or submitted for publication (Giessen, Ibach & 
Grant,  1964; Ritter, Giessen & Grant,  1964; Giessen, Kane 
& Grant,  1965). Since, additional binary and ternary systems 

have been investigated and t8 new ordered phases have 
been found. Detailed descriptions of this work will again 
be published elsewhere. 

The structures were all derived from powder patterns 
taken with an X R D  5 diffractometer or with a 114.6 mm 
camera and Cu K~, radiation; this was made possible by 
the fact that the complex close-packed structures are rel- 
ated, and that their powder patterns show typical coincid- 

Compositional 
designation 

Molr 
WIr 

- VIr 
(V0.96Ir0.04)Ir: (fl-- VIr) 
TaNi2 
MoIr3 
WRh3 
fl-- TaNi3 

Ta(Pdo.92Rho.o8)3 
Ta(Pdo.7zRho.28)3 

Ta(Pdo.ssRuoq2)3 
Ta(Pd0-67Rh0.33)3 
Ta(Pd0.sRh0.5)3 
Ta(Pd0.75Ru0.25)3 
Ta(Pd0.v25Rh0.225)3(H.T.) 
Ta(Pdo.78 Ruo.22)3(H.T.) 
Ta(Pdo.sRuo.5)3 
(Tao.sAlo.5)Ni3 

Table 1. New binary and ternary transition metal phases 

Crystal Structure Layer structure 
system type symbol 

Orthorhombic B19-  AuCd AB(2) 
Orthorhombic B19 - AuCd AB(2) 
Orthorhombic ~ -  VIr 
Tetragonal L10 - AuCu AB(3) 
Tetragonal MoSi2 - -  
Hexagonal DO19-MgCd3 AB3(2) sh 0 
Hexagonal DO19-MgCd3 AB3(2) sh 0 
Monoclinic f l -  NbPt3* AB3(12) sh ½ 

a0 
2"752/~, 
2.760 
5.791 
3.887 
3.154 
5.487 
5.453 
5.11 

Orthorhombic f l -NbPd3 t  AB3(6) sh 
Rhombohedral f l -Ta(Pd,  Rh)3 AB3(9) sh 

(ordered Sm) 
Rhombohedral f l -Ta(Pd,  Rh)3 AB3(9) sh 
Hexagonal y -  Ta(Pd, Rh)3 AB3(10) sh 
Hexagonal PuAI3(VCo3) AB3(6) sh 
Hexagonal PuAI3(VCo3) AB3(6) sh 
Hexagonal DO24-TiNi3 AB3(4) sh 
Hexagonal DO24-TiNi3 AB3(4) sh 
Cubic L12-  AuCu3 AB3(3) sh 
Hexagonal DO24--TiNi3 AB3(4) sh 

* Giessen, Kane & Grant (1965). 
t Giessen & Grant (1964). 
~: Shift density not certain. 

½5 5"492 
0 5"517 

0 5"531 
0 5"520 
0 5"530 
0 5"509 
0 5'517 
0 5"525 
0 3"893 
0 5"112 

bo 
4"804 A 
4"811 
6"756 

4"54 
~=90°38 ' 
4"829 

co 
4"429 A 
4"452 
2-796 
3"651 
7"905 
4"385 
4"350 

25"50 

13.54 
20.26 

20-252 
22"43 
13"493 
13.44 
8.978 
9-027 

8"340 


